Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Open Vet J ; 13(2): 241-246, 2023 02.
Article in English | MEDLINE | ID: mdl-37073247

ABSTRACT

Background: Primary lung neoplasms are, frequently represented by solid, solitary, or multiple formations. However, malignant cavitary lesions may be presented as lung adenocarcinomas. Those malignant lesions differ from benignant bullae by the thickness heterogeneity of its surrounding shape. Case Description: The present clinical case reports a 14-year-old female dog, of mixed breed, with an increase in the coughs frequency, fatigue, and exercise intolerance. A chest X-ray was taken, a large emphysematous cystic area was found, with thickened and irregular walls located in the left caudal pulmonary lobe, which measured 8 × 7.5 × 3 cm, and rejected the bronchial branch corresponding to the left caudal pulmonary lobe, in addition to thickening of the bronchial walls, compatible with bronchopathy. The tomographic examination of the cavity showed an air content structure, oval to round in shape, with irregular thick hyperattenuating walls measuring approximately 0.4 cm in thickness, occupying more than 30% of the left hemithorax, and pulmonary lobectomy was chosen. Histopathology confirmed the diagnosis of bronchoalveolar adenocarcinoma, with the presence of sparse areas of necrosis and dystrophic calcification. Conclusion: The present case successfully diagnosed a malignant bulae, after a surgical remove. The tomographic finds although not confirmatory, suggest a malignant component by the shape and thickness of its wall. The tomographic exam is of great importance, because only through it, it is possible to evaluate if there is lymph node or pleural involvement or the presence of small metastasis foci. There is indication for surgery and histopathological examination of the piece for a definitive diagnosis.


Subject(s)
Blister , Dog Diseases , Lung Neoplasms , Animals , Dogs , Female , Blister/diagnosis , Blister/pathology , Blister/veterinary , Dog Diseases/diagnosis , Dog Diseases/pathology , Dog Diseases/surgery , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Lung Neoplasms/veterinary , Tomography, X-Ray Computed/veterinary
2.
Open Vet J ; 9(1): 38-43, 2019 04.
Article in English | MEDLINE | ID: mdl-31086764

ABSTRACT

Many projects have been developed in the last years for the conservation of sea turtles. Young green turtles (Chelonia mydas) often nest on the Brazilian coast. Because they nest in beaches along the coastline and islands, green turtles are susceptible to fishing and accidental ingestion of anthropogenic debris. Early detection of ingested debris is crucial for the survival of rescued sea animals. Ultrasound (US) has emerged as a viable imaging technique for visceral examination in veterinary medicine. Previous studies have suggested the left and right cervicobrachial, axillary, pre- and post-femoral areas as the only viable approaches for US examination, but the acoustic windows available for imaging of coelomic structures are limited. It is important to notice that a detailed evaluation of all gastrointestinal tracts, especially the duodenum, is crucial for detecting foreign bodies and intestinal obstructive processes, as well as obtaining essential information such as intestinal motility and heart frequency. Intestinal motility and heartbeats are not detected through radiographic examination or through the acoustic windows available so far. This study aimed to establish the viability of US examination of coelomic viscera through the plastron in stranded green turtles. Eleven young green turtles rescued by the GREMAR Institute were examined. Turtles were placed in the dorsal decubitus position during US examination, which did not require anesthesia. Even though the plastron is constituted of bones and cartilage, the present research has proven the viability of obtaining US images through it, making it possible to visualize structures undetectable through the acoustic windows previously suggested. The following organs were evaluated through the plastron: heart, stomach, duodenum, jejunum, colon, liver, gallbladder, kidneys, bladder, and spleen (in case of splenomegaly). US imaging through the plastron is a viable approach for detecting ingested artificial debris, which represents one of the leading causes of death among sea turtles.


Subject(s)
Foreign Bodies/veterinary , Gastrointestinal Contents/diagnostic imaging , Gastrointestinal Tract/diagnostic imaging , Turtles , Ultrasonography/veterinary , Animals , Brazil/epidemiology , Feces/chemistry , Foreign Bodies/epidemiology , Foreign Bodies/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...